- C.M. Soukoulis, Photonic crystals and light localization in the 21st century. NATO ASI Series C 563, 475–487 (2001)Google Scholar
- S. Sundhakaran, Negative refraction from electromagnetic periodic structures and its applications, Ph.D. Dissertation, Department of Electronic Engineering, Queen Mary, University of London, 2006Google Scholar
- D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopolus, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microwave. Theory. Tech 47, 2059–2074 (1999)CrossRefGoogle Scholar
- S.D. Assimonis, T.V. Yioultsis, C.S. Antonopoulos, Design and optimization of uniplanar EBG structures for low profile antenna applications and mutual coupling reduction. IEEE Trans. Antennas Propag. 60, 4944–4949 (2012)CrossRefGoogle Scholar
- L. Kurra, M.P. Abegaonkar, A. Basu, S.K. Koul, FSS properties of a uniplanar EBG and its application in directivity enhancement of a microstrip antenna. IEEE Antennas Wireless Propag Lett 15, 1606–1609 (2015)CrossRefGoogle Scholar
- A.M. Soliman, D.M. Elsheakh, E.A. Abdallah, H. El-Hennawy, Design of planar inverted-F antenna over uniplanar EBG structure for laptop MIMO applications. Microw. Opt. Technol. Lett. 57, 277–285 (2015)CrossRefGoogle Scholar
- M. Luberto, W. G. Fano, in Microstrip antenna design using EBG (Electromagnetic Band Gap) structures at 2.4GHz, XVI Workshop on Information Processing and Control (RPIC), (Argentina, 2015), pp. 1–7Google Scholar
- M.F. Abedin, M.Z. Azad, M. Ali, Wideband smaller unit-cell planar EBG structures and their application. IEEE Trans. Antennas Propag. 56, 903–908 (2008)CrossRefGoogle Scholar
- B.-Q. Lin, X.-Y. Ye, X.-Y. Cao, F. Li, Uniplanar EBG structure with improved compact and wideband characteristics. Electron. Lett. 44, 1362–1363 (2008)CrossRefGoogle Scholar
- W. Wang, X.-y. Cao, W.-y. Zhou, T. Liu, A novel compact uni-planar electromagnetic band-gap (UC-EBG) structure. Int. Conf. Microwave Millimeter Wave Technol 4, 1634–1636 (2008)Google Scholar
- Z. Z. Abidin, R.A.Abd-Alhameed, N. J. McEwan, S. M. R. Jones, K. N. Ramli, and A. G. Alhaddad, in “Design and Analysis of UC-EBG on Mutual Coupling Reduction”, Antennas & Propagation Conference, (LAPC 2009), (Loughborough, 2009), pp. 693–696Google Scholar
- A. Aminian, F. Yang, Y. Rahmat-Samii, In-phase reflection and EM wave suppression characteristics of electromagnetic band gap ground planes. Antennas Propag Soc. Int. Symp. IEEE 4, 430–433 (2003)Google Scholar
- CST Microwave Studio [Online]. Available: http/www.cst.com
- M. Manteghi, Y. Rahmat-Samii, Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations. IEEE Trans. Antennas Propag. 53, 466–474 (2005)CrossRefGoogle Scholar
- R.G. Vaughan, J.B. Andersen, Antenna diversity in mobile communication. IEEE Trans. Veh. Technol. 36, 149–172 (1987)CrossRefGoogle Scholar
- S. Blanch, J. Romeu, I. Corbella, Exact representation of antenna system diversity performance from input parameter description. Electron. Lett. 39, 705–707 (2003)CrossRefGoogle Scholar
- J. Thaysen, K.B. Jakobsen, Envelope correlation in (N, N) MIMO antenna array from scattering parameters. Microw. Opt. Technol. Lett. 48, 832–834 (2006)CrossRefGoogle Scholar
- S.H. Chae, S.-k. Oh, S.-O. Park, Analysis of mutual coupling, correlations, and TARC in WIBro MIMO array antenna. IEEE Antennas Wireless. Propag. Lett. 6, 122–125 (2007)CrossRefGoogle Scholar
- H. Shin, J.H. Lee, Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole. IEEE Trans. Inform. Theory 49, 2636–2647 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- D. Valderas, P. Crespo, C. Ling, UWB portable printed monopole array design for MIMO communications. Mirowave. Opt. Technol. Lett 52, 889–895 (2010)CrossRefGoogle Scholar
- G.J. Foschini, M.J. Gans, On limits of wireless communications in a fading environment when using multiple antennas. Wirel. Pers. Commun. 6, 311–335 (1998)CrossRefGoogle Scholar
- H.-T. Hu, F.-C. Chen, Q.-X. Chu, A wideband U-shaped slot antenna and its application in MIMO terminals. IEEE Antennas Wirel. Propag. Lett 15, 508–511 (2016)CrossRefGoogle Scholar
- Z. Z. Abidin, Y. Ma, R. A. Abd-Alhameed, K. N. Ramli, D. Zhou, M. S. Bin-Melha, J. M. Noras, R. Halliwell, in Design of 2 × 2 U-shape MIMO slot antennas with EBG material for mobile handset applications, Progress In Electromagnetics Research Symposium Proceedings, (Marrakesh, Morocco, 2011), pp. 1275–1278Google Scholar
- Z. Z. Abidin, Design, modeling, and implementation of antennas using electromagnetic bandgap material and defected ground planes, Ph.D. Thesis, University of Bradford (2011)Google Scholar
Electromagnetic Band Gap Slot Antennas
Electromagnetic Band Gap
From above mentioned slot antennas, it is known that the printed wide-slot antenna may achieve a wide range bandwidth based on design of various special slots or stubs. Unfortunately, it maybe wastes a lot of time for antenna designers to find a suitable slot antenna structure according to a required operation bandwidth.